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Multiple forms for standing waves in deep water periodic in both space and time are 
obtained analytically as solutions of Zakharov’s equation and its modification, and 
investigated computationally as irrotational two-dimensional solutions of the full 
nonlinear boundary value problem. The different forms are based on weak nonlinear 
interactions between the fundamental harmonic and the resonating harmonics of 2, 3, 
. . . times the frequency and 4, 9,. . . respectively times the wavenumber. The new forms 
of standing waves have amplitudes with local maxima at the resonating harmonics, 
unlike the classical (Stokes) standing wave which is dominated by the fundamental 
harmonic. The stability of the new standing waves is investigated for small to moderate 
wave energies by numerical computation of their evolution, starting from the standing 
wave solution whose only initial disturbance is the numerical error. The instability of 
the Stokes standing wave to sideband disturbances is demonstrated first, by showing 
the evolution into cyclic recurrence that occurs when a set of nine equal Stokes 
standing waves is perturbed by a standing wave of a length equal to the total length 
of the nine waves. The cyclic recurrence is similar to that observed in the well-known 
linear instability and sideband modulation of Stokes progressive waves, and is also 
similar to that resulting from the evolution of the new standing waves in which the first 
and ninth harmonics are dominant. The new standing waves are only marginally 
unstable at small to moderate wave energies, with harmonics which remain near their 
initial amplitudes and phases for typically 100-1000 wave periods before evolving into 
slowly modulated oscillations or diverging. 

1. Introduction 
Standing waves may be generated at the free surface of deep water contained 

between two parallel vertical walls. The most important feature is that their spectrum 
with respect to the coordinate perpendicular to the walls is discrete, with wavenumbers 
which are integral multiples of z / l ,  where 1 is the distance between the walls. If they are 
also periodic in time we describe them as pure standing waves, in contrast to standing 
waves which are evolving in time. 

Although Stokes investigated nonlinear progressive waves in the middle of last 
century, it appears that it was not until Rayleigh (1915) presented the third-order 
theory that investigations of nonlinear standing waves at the free surface of deep water 
have been reported. Penney & Price (1952) extended Rayleigh’s method to the fifth 
order and applied it to a postulate that the stable standing wave of greatest height has 
a crest of right-angled nodal form. Taylor (1953) tested the results of Penney & Price 
experimentally, showing reasonable agreement with their conclusions although he 
disagreed with parts of their arguments. Saffman & Yuen (1979) used a numerical 
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scheme which calculates the evolving position of the free surface to obtain wave profiles 
consistent with those predicted by Penney & Price and observed by Taylor. It is noted 
that the standing waves observed by Taylor and calculated by Saffman & Yuen are not 
pure standing waves. The different forms of standing waves described in the present 
investigation are pure standing waves, although in addition we do calculate their time 
evolution properties. 

Schwarz & Whitney (198 1) and Rottman (1 982) developed high-order expansions 
which were summed with the assistance of Pad6 approximants, with the aim in both 
investigations of understanding the approach to the wave of greatest height. The 
present investigation is restricted to standing waves of small to moderate heights. 
Mercer & Roberts (1992) also studied steep standing waves using a distribution of 
vortices on the water surface, in a semi-Lagrangian approach. All of the above authors 
restricted themselves to pure standing waves with a Stokes ordering of harmonic 
amplitudes. Rottman (1982), however, indicated the possibility of different solutions 
with a different ordering of harmonic amplitudes, but did not pursue it in detail. 

Glozman, Agnon & Stiassnie (1993) and Agnon et al. (1992) derived and used a 
recursive high-order Hamiltonian formulation of the water wave problem to study 
standing waves. Glozman et al. focused their computation on the interaction of the 
fundamental harmonic with the fourth harmonic in pure standing waves. They found, 
in addition to the Stokes type of wave, four new waves in which the fourth harmonic 
is comparable to the fundamental harmonic. Agnon et al. investigated all five waves 
(which they denoted S ,  A, B, C and D) using 12 to 20 harmonics, and found that all 
exist to high order. 

In the present investigation, we study the existence, stability, and long-time 
behaviour of these and other new standing waves. There is no formal proof of existence 
yet, even for the Stokes type of standing wave S. Amick & Toland (1987) addressed the 
existence problem for the Stokes type but stated that the analytical question of the 
convergence of the relevant series remains open. 

Okamura (1984) used Zakharov’s equation, which is correct to the third order, to 
make calculations of the linear stability of the Stokes type of standing waves. The 
regions of instability of these waves to two- and three-dimensional standing wave 
disturbances were found. Although the mathematical description is consistent and the 
calculations at the lower wave steepnesses appear to be correct, there is a degree of 
abstraction in allowing the standing wave disturbances to have a continuous spectrum, 
unrelated to the discrete spectrum of the standing waves themselves. Also, the third- 
order theory is not valid at the higher wave steepnesses considered. Stiassnie & Shemer 
(1984) modified Zakharov’s equation in extending it to the fourth order. We use their 
improved formulation to find the regions of linear instability applicable to the different 
standing waves considered below. 

2. Theory 
2.1. Background 

The equations governing the irrotational motion of waves on the free surface of deep 
water are 

V2$ = 0, z d V(X, t) ,  (2.1 a) 

(2.1 b) 

lV$l-O, z+--oo, (2.1 c) 
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where $(x, z ,  t )  is the velocity potential, v ( x , t )  is the displacement of the free surface 
and g the gravitational acceleration. The horizontal coordinates are x = (x,y), the 
vertical coordinate z is pointing upwards, and t is time. 

When initial conditions are given in terms of ~ ( x ,  0), $(x, ~ ( x ,  0), 0), the problem can 
be transformed into an evolution equation in the Fourier plane 

ZB 
i - = I,(k, t )  + 14(k, t )  + 15(k, t )  + . . . . (2.2) at 

The new dependent variable B(k, t )  is a free component of the wave field (as distinct 
from the bound components defined below), and I,, I,, 15: . . . , are integral operators 
representing quartet, quintet, sextet, . . . , nonlinear interactions respectively. 

The leading term I, on the right-hand side of (2.2) was first derived by Zakharov 
(1968), and the higher-order term I, by Stiassnie & Shemer (1984): 

I, = /JJyrn Ti, ,, , BT B, B, 6(k + k, - k, - k,) ei(w+wI-Oz-w 3) dk, dk, dk,, (2.3 a)  

ei(w+wl-02-w3-w,) t + ~ ( 3 )  
0 , l .  2 , 3 , 4  BT B; B3 B, S(k +kl + k, -k, - k4) 

ei(w+w,+wz-w3-w,) ‘} dk, dk, dk, dk,, (2.3b) 

where a compact notation is used in which the arguments ki are replaced by the 
subscript i and the subscript zero is assigned to k. The Dirac delta function of the two- 
dimensional vector k is defined as 

6(k) = eik.xdx. 
(2n) Sh -m 

(2.3 c) 

The frequency w is related to k through the linear dispersion relation w(k)  = (g(k1);. 
The kernels c\,,,,, Ug\,2,3,4,. . . ,as well as other kernels to appear subsequently, are 
given in Stiassnie & Shemer (1984). The asterisk denotes the complex conjugate. The 
component B(k, t )  is related to the Fourier transform (denoted byn) of ~ ( x ,  t )  and of the 
velocity potential at the free surface, @(x, t )  = $(x, ~ ( x ,  t),  t ) ,  through b(k, t )  where 

f(k, t )  = (0/2g): [b(k, t )  + b*( - k, t)] ,  (2.4a) 
&(k, t )  = - i(g/2w)t [b(k, t )  - b*( - k ,  t)] ,  (2.4b) 

and b(k,t) = [B+B’+B”+B”’+ ...]e-iw(k)t. (2.4 c) 

The quantities B ,  B ,  . . . , are the bound components of the wave field, which are given 
in terms of B by equations such as 

B’ = -1r { $\,, B, B,6(k-k1-k,) 
ei(w-w,-w,) t + Ti, , BT B, 6(k + k, - k,) 

w - w1 - 0, -‘x 

ei(w+wl-w,) t ei(w+w,+wz) t 
X + ci, , BT B; S(k + k, + k,) 
0 4- w1 - w 2  w+o,+w, 

] dk, dk,. (2.5) 

We consider two-dimensional standing waves (independent of y )  in the present 
investigation, in a deep tank with walls at x = 0,Z. The end conditions are 

$,(O) = $,(I) = 0, (2.6) 
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M 

B(k,  t )  = C. Bm(t)[6(k-mki)+6(k+mki)] ,  
m=1 

where k = n/l  and i is the unit vector in the x-direction. The upper bound M is set to 
ensure that the sum stays within the gravity wave regime. 

2.2. Linear and weakly nonlinear theory 
The general solution of the linearized two dimensional version of (2.1) or (2.2) with the 
end conditions (2.6) is 

M 

7 = 2 a,  cos (mkx) cos [(mgk); t + T,], 

M 

# = c - - a, emkz cos (mkx) sin [(mgk); t + T,]. 
m=l (:k) 

(2.8 a )  

(2.8 b) 

Each of the terms in ( 2 . 8 ~ )  is a free component, with amplitude a,  and phase 7,. The 
steepness mka, of each free component is of order c < 1 to justify the use of weakly 
nonlinear theory. 

The general series (2.8a, b)  consist of standing waves with a common wavelength 21 
and a range of periods. We focus here on standing waves for which the motion is 
strictly periodic in time with a period T where T = 2(d/g)k ,  which we call pure standing 
waves. They are obtained when a, = 0 for all m except when m = n2, n = 1,2, . . . , and 
are given by 

7 = C. an2 cos (n'kx) cos [n(gk)a t + T,z], ( 2 . 9 ~ )  
N 

n=1 

anz cos (n2kx) sin [n(gk)a t + 7 , 2 ] .  

s=l 
(2.9b) 

A large variety of standing waves of this type is possible because of the large range of 
possible values for anz and 7 , 2 .  

Weakly nonlinear interactions produce standing wave solutions containing the series 
(2.8a, b)  (or (2.9a, b)) except that a,  and T, are functions of the slow times 1, = Pt ,  
p = 2,3,. . . . The weakly nonlinear solutions also include the bound components 
composed from double, triple,. . . products of the free components. For weakly 
nonlinear pure standing waves to exist with a strict periodicity like their linear 
counterpart (2.9a, b), it is necessary that a,z is independent of time and that T,Z has a 
specific time dependence. This constraint imposes selection criteria for an% from the 
third-order theory and for T,Z from the fifth-order theory, which are derived in $92.3 
and 2.4 respectively. 

The above weakly nonlinear standing waves also have slowly varying forms in which 
a , ~  and 7 , 2  are functions of the slow times, t ,  = P t , p  = 2,3,. . . . Sideband instability 
which brings in the components a, for m = n2 k I ,  n = 2,3, . . . produces slowly varying 
standing waves of this type. This phenomenon is discussed in 42.5. 

2.3. Third-order (Zakharou's) theory 
We consider weakly nonlinear pure standing waves containing three free components 
for which 

( 2 . 1 0 ~ )  
3 

B(k, t )  = Bn2[6(k - n'ki) + 6(k + n'ki)], 
n=1 
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where Bn2 = An2 e-i""t+'@n' (2.1 0 b) 

and A,z, Q, $,z are all real constants with A,z > 0. The period of this standing wave 
is 

27t 
(gk); + 52 * 

T =  (2.11) 

The subscript notation is best explained by the example 

&i44 = T(9ki, - ki, 4ki, 4ki). 

Most of the coefficients in the above system (2.12) are either zero or cancel each other 
owing to the symmetry of the problem, leaving the substantial simplification 

QA, = - -A; ,  k3 2QA, = -__A: ,  64k3 352Ag = -- 729k3 A:. (2.13 a-c) 
47t2 4x2 4x2 

The standing Stokes wave is a solution of (2.13) if A ,  = A, = 0, when the well- 
known result is obtained: 

This derivation uses the relation 

(2.14~)  

(2.14b) 

from Stiassnie & Shemer (1984). 
The system (2.13) admits four additional non-trivial solutions. 
(i) For A, = 0, elimination of 52 between (2.13 a) and (2.13 b) gives 

= & a4/a,  = a, (2.15) 

with 52 the same as in (2.14). 
(ii) For A, = 0, elimination of $2 between (2.13 a) and (2.13 c) gives 

(Ag/A,)2 = A, = ;, (2.16) 

(iii) Equations (2.14), (2.15), and (2.16) remain valid for the more general case in 
with Q the same as in (2.14). 

which all three waves coexist. This result is easily generalized for N > 3. 
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(iv) Another solution is possible for A ,  = 0. Elimination between (2.13b) and 
(2.13 c) for this case yields 

8k" - 
Q = - T A 4  - -2(gk);(ka,)', (2.17a) 

(A , /AJ  = &, ag/a, = f .  (2.17 b) 

Zakharov's equation, containing the lowest significant order of nonlinearity, enables 
specific values to be obtained for the wave amplitudes a,p. It does not provide any 
information about the phases on,. For this, it is necessary to go to higher nonlinearities 
using the modified Zakharov equation and its extensions. 

7r- 

2.4. Higher-order nonlinearity 
Substitution of (2.10) into (2.2) with I ,  = 0 , p  > 4 (modified Zakharov's equation) 
yields 

Q A ,  = -,A~+[U~L,~,ll e-'fi1+(U:3,iI,+ U:",\,,)~'#J]A~A,, (2.180) 
k3 
47r 

Note that at t 

64k3 
4n 

2QA, = -2 A: + Ui:\,, e-'*a A4 1, (2.18b) 

(2.1 8 c) 

is order of nonlinearity and for the three chosen components A , ,  A,,  A, ,  
there is no additional coupling between the component A ,  and the other two. The new 
coupling between A ,  and A,  could in principle produce information about the phase 
94 and produce a correction to (2.15). However, symbolic computation (with Maple) 
of Uii\,,, lfiq\,, and the sum Ul",:,, + U!t\,, show that all are exactly zero, so that there 
is no contribution of the new terms to the right-hand side of (2.18). 

The sextet nonlinear interaction term, Z5, in (2.2) has a similar structure to that of 
Z3 and 1, in (2.30, b), with unknown real kernels which we denote by Q o , 1 , 2 , 3 , 4 , 5 .  This 
order modifies the structure of the system (2.18). An important part of the modification 
arises from the term 

Q421111 e-21'4A;1 A4 (2.19) 

on the right-hand side of (2.18b). (The exponent -245, in (2.19) is a combination of 
the exponent -i$, in the term B,* B; B: of Z, on the right-hand side of (2.2) and the 
exponent iQ, from B, on the left-hand side of (2.2).) A necessary condition for a pure 
standing wave is therefore 

29, = mn, m = 0, -t 1, i 2  , . . .  , (2.20) 

which yields four different solutions having $, = 0, in, 7r, $I, which we denote by 
standing waves SA, SB, SC, SD respectively. (The letter S indicates that the amplitude 
a, has a value comparable with that for the Stokes standing waves, and the second 
letter follows the notation of Agnon et a/ .  1992 for the value of $,.) Note that the result 
(2.20) relies on the assumption that Q441111 =+ 0, an assumption which is consistent with 
the numerical calculation of the four different solutions ($4.2). The space-time 
perspective of the standing wave SA over half of a wave period is compared with the 
corresponding perspective of the Stokes standing wave S in figure 1. 



141 

FIGURE 1. The space-time perspectives of (N) the S and (b)  the SA standing waves with t = 0.1, vertical 
magnification TI. The length I between the vertical walls (half the fundamental wavelength) is drawn 
across the page, and half the fundamental period is shown up the page. 

These different types of standing waves were first described by Agnon et al. (1 992). 
For A ,  = 0, A , , A ,  =k 0 only the two types of standing waves for which r$9 = 0, n: are 
found to occur, and are denoted by standing waves SNA, SNC respectively. (The letter 
N indicates that the amplitude a, is almost null.) We use numerical solutions of the full 
nonlinear wave problem in order to calculate these and other new forms of nonlinear 
standing waves and to investigate their stability. 

2.5. Linear stability 
The linear stability of the new waves to small disturbances at adjoining wavenumbers 
is studied next. Two cases are considered. 

(i) Class I instability of the wave having components A ,  and A ,  with disturbances 
at  k,  = 8k and k, ,  = 10k. This instability has the timescale t ,  = t't. The governing 
equations are 

(2.21 a) 

(2.21 b) 

where B, is given by (2.10b) with (2.14a, b)  and (2.16). Following Stiassnie & Shemer 
(1984) or  Okamura (1984), the range of steepness for instability, which is found to be 
independent of 0, and thus the same for the standing waves SNA and SNC, is given 

0.0812 < ka, < 0.3239. (2.21 c) 
by 
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(ii) Class I combined with Class I1 instability of the wave having components A ,  and 
A ,  with disturbances at k, = 3k and k5 = 5k. This instability depends on two 
timescales, t2 = e't and t ,  = e3t. The governing equations are 

(2 .22~)  

(2.22b) 

where B1 and B4 are given by (2.10b) and (2.14a, b), (2.15). The range of steepness for 
instability depends on q54. The standing wave SA is found to be unstable for 

0.2031 < ka, < 0.3354, 

0.1844 < ka,, 
the standing wave SC for 

and the standing waves SB and SD are always unstable. 
Both systems (2.21) and (2.22) represent cases of near-resonant interaction. 

(2.224 

(2.22d) 

3. Computation 
3.1. Governing equations 

The dimensional quantities of the previous section are all made non-dimensional for 
the purpose of computation. Lengths are made non-dimensional with respect to l /n,  
where 1 is the distance between the vertical walls, so that the standing wave motion 
takes place between the vertical planes x = 0 and x = x. Times are made non- 
dimensional with respect to the inverse of the lowest linear frequency (ng/@. The 
displacement of the water surface is written z = ~(x, t )  and the water motion is assumed 
to be irrotational with the non-dimensional velocity potential $(x, z ,  I). This satisfies 
Laplace's equation 

4,,+q5,, = 0, z d 7, (3.1 a)  

with q5, = 0 on x = 0 and x = n, and # z + O  as z+- co. The nonlinear boundary 
conditions on the water surface are the kinematic condition 

7t -$ ,+r ,$ ,  = 0 on z = 7, (3.1b) 

and the dynamic condition 

q5t+7+:(q5z+q5z) = 0 on z = 7. (3.1 c) 

One of the simplest nonlinear solutions is that for two-dimensional pure standing 
waves. Their Fourier series expansions (before truncation) are 

m m 

7 = C cos mx(am, cos nut  + b,, sin nut) ,  m + n even, ( 3 . 2 ~ )  
m=l n = m m o d z  

and 

$ = $ 2 cos mx emz(cmn cos not  + d,, sin nut) ,  m + n  even, (3.2 b) 

where the coefficients am,, b,,, em,, d,, are constants, and u ( - 1) is the nonlinear 

m = l  n = m m o d $  
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frequency of the fundamental harmonic. The constraint that m+n is even is a 
consequence of the invariance of 7 and q5 when x and ot are both changed by n. 

A number of measures of the non-dimensional standing wave amplitude have been 
used previously. Solutions of Zakharov’s equation have often used the steepness of the 
fundamental harmonic, a,,, while Schwartz & Whitney (1981) use half of the non- 
dimensional wave height at t = 0, which in the present notation is 

In order to reflect the fact that the present standing waves can have harmonics with 
local amplitude maxima at other than the fundamental harmonic, with phases different 
from that of the fundamental harmonic, the non-dimensional root-mean energy is 
chosen as the measure of wave amplitude. It is 

(West 1981, pp. 32-34), which is independent of t because of the conservation of 
energy. Note that e - a,, in the linear limit of a standing wave at the fundamental 
harmonic (with phase zero) only. 

3.2. Pure standing wave solutions fixed-point method) 
When the Fourier series (3.2a, b)  are substituted into (3.1 b, c), denoted by F = 0, G = 
0 respectively, the resulting equations may be rewritten 

m m 
F =  c C cosMx(A,,cosNwt+B,,sinNwt) = 0, M+Neven, (3.5a) 

M=l N = M m o d Z  

and 
m m 

G = c C cos Mx(C,, cos Nwt + D,, sin Nwt) = 0, M +  Neven, (3.5 b)  

where the coefficients A,,, B,,, C,,, D,, are functions of the coefficients a,,, b,,, 
cm,,dmn and the frequency w .  The function dependence could be found, but this is 
unnecessary for the calculation of numerical solutions. The Fourier series (3.2a, b)  are 
also substituted into the normalizing equation (3.4) rewritten to the left-hand side, 
which is then denoted by H = 0, and is a function of amn, b,,, c,,, d,, and w also. This 
description assumes the usual calculation in which the root-mean energy e is given and 
the quantities am,, b,,, c,,, d,, and w have to be found for a particular family of 
standing wave solutions. It takes only a simple re-ordering of the method if, instead, 
one of the latter quantities is given and E is included among the quantities that have to 
be found. 

Particular numerical values for the coefficients amn, b,,, c,,, d,, and w are inserted 
into truncated versions of the Fourier series (3.2a, b), the series are substituted into 
(3.1 b, c), (3.4) over an array of points in x and t ,  and numerical values of the 
coefficients A,,, BMN, C,,, D,, are calculated from truncated versions of (3.5a, b)  
by the fast Fourier transform method. The partial derivatives of A F N ,  B,,, C M N ,  D,, 
with respect to a,,,b,,,c,,,d,, and w are calculated numerically by the same 
method, and the Jacobian is formed from these derivatives and from the partial 
derivatives of H.  The numerical values of a,,, b,,, cmn, d,, and w are improved then 
by Newton’s method until A,,, BM,, C,,, D,,, H are as close to zero as is required 

M=l N=MmodZ 
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(typically was found to be adequate). At the same time, the number of terms 
included in the truncated series may be increased until the residuals in (3.5a, b) from 
terms not included are also as close to zero as is required. 

The calculations are started when 6 is sufficiently small that the coefficients am,, b,,, 
cmn, d,, may be given by linear values with w = 1 as an initial approximation. Each 
solution for the coefficients is then used as an initial approximation to the next solution 
as e is increased. A typical solution for the new standing waves at 6 - 0.1 with the 
above numerical precision has about 90 harmonics (m < 20, II < 9), needing 360 
amplitudes. The method of solution described above has evolved from one developed 
originally for three-dimensional permanent waves on deep water (Bryant 1985). The 
generalization of the method to calculations of the nonlinear time evolution is 
described next. 

3.3. Non-periodic standing waves (time evolution method) 
The displacement, ~(x, t ) ,  and velocity potential, $(x, 2, t),  are expanded now in Fourier 
series in x, with Fourier coefficients dependent on t, to yield (before truncation) 

and 

cc 

7 = C a,(t)cosmx, 

$ = C b,(t) em2cosmx. 

m = l  

4. 

m=l 

(3.6a) 

(3.6b) 

When the Fourier series (3.6a, b) are substituted into (3.1 b, c), these equations may be 
rewritten, following (3 .54  b), in the form 

m m 

F =  C A,(t)cosMx=O and G =  2 B,(t)cosMx=O, (3.7a,b) 

where the coefficients AM(t), B,(t) are functionals of a,(t), bm(t). Each of the 
coefficients A,(t), BM(t), when equated to zero, is an implicitly-defined first-order 
nonlinear ordinary differential equation for the corresponding Fourier coefficient of 
(3.6a, b) in terms of all Fourier coefficients of (3.6~2, 6). It is extracted numerically from 
(3.7a, b) by the fast Fourier transform method. The set of differential equations 
obtained by equating all coefficients AM(t), B,(t) to zero is solved numerically using an 
integrater devised for initial value problems in stiff systems of implicit ordinary 
differential equations (NAG subroutine D02NGF), with a local error tolerance of 

The differential equations are implicit because the exponential multipliers in 
(3.6b) are evaluated on the surface given by ( 3 . 6 ~ ) .  

The root-mean energy (3.4) is calculated regularly as a check on the computation. 
In a number of the examples, the nonlinear interactions between the harmonics cause 
a slow transfer of energy to the higher harmonics. This results in a buildup of energy 
in the truncation harmonics, causing the total energy to increase and the calculations 
to fail. It is only a partial remedy to include more harmonics because it may only 
postpone the failure, and it may introduce rounding errors from the exponential 
multipliers in (3.6b) at large wavenumbers. 

The Fourier amplitudes calculated in (3.6a, b) evolve in fast time. These Fourier 
expansions are interpreted more easily if the fast time variation is removed by Fourier 
decomposition over each fundamental period 27c/w, to yield (before truncation) 

M = l  M=l 

m a c  

7 = C 2 a,,(t) cos mxcos (nwt + a,,(t)), (3.8a) 
m = l  n=O 
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4 = C 2 cmn(t)  cos mx em* cos (nut + y,,(t)), 
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(3.86) 
m a  

m=l n=n 
and 

where the amplitudes and phases are now functions of slow time. (It should be noted 
that the amplitudes am,, c,, defined in (3.8~7, b) differ from those defined in (3.2a, b) 
unless the phases are all zero.) 

The nonlinear time evolution calculations are used to investigate the stability of pure 
standing wave solutions because they do not make the constant amplitude and phase 
assumptions implicit in linear stability analyses. The time evolution calculations are 
based on a numerical method independent of that used for the fixed-point calculations, 
so that consistency between the properties obtained from the two sets of calculations 
increases confidence in both. 

4. Standing wave examples 
4.1. Standing waves with Stokes ordering 

The pure standing waves calculated originally by Rayleigh (1915), and improved to 
high order by Schwarz & Whitney (1981), have an ordering of harmonic amplitudes 
similar to that of the Stokes progressive waves, and are named Stokes standing waves 
below (denoted by S). The amplitudes decrease monotonically, in general, as their 
wavenumber m and frequency nu increase. 

The fixed-point computational method (Q 3.2) converges rapidly to the Stokes 
standing wave solutions with high numerical precision (error < lo-,'), up to E = 0.2. 
Solutions at larger values of E are not included here because of the convergence 
difficulties associated with the exponential multipliers in (3.2b) a t  high wavenumbers. 
By choosing the time origin so that the phase of the fundamental harmonic a,, is ' zero, 
all the Fourier sine coefficients in (3.2a, b) are also zero. The frequency w,  expanded 
as a polynomial in the fundamental amplitude a,, over the range 0 < E < 0.2 (using the 
NAG subroutine E02ADF), is found to have the leading terms 

w = 1.000000-0.1250~~,+ . . . .  (4.1 a)  

These are consistent with (2.11) and (2.14a), and the corresponding expansion for 1/w2 
in terms of cSw (defined in (3.3)) agrees with the leading terms of Schwarz & Whitney, 
equation (3.2). For the purpose of comparison with later expansions, the leading term 
of the expansion for the amplitude 

u42 = 0 . 1 9 ~ ; ~  + . . . . (4.1 b) 

Although the Stokes standing waves are generally regarded as being stable to 
superharmonic disturbances at small to moderate amplitudes, they are unstable to 
subharmonic disturbances such as those described in (2.21 a-c). The instability range 
(2.21 c) suggests that if a set of nine Stokes standing waves is generated between the 
vertical walls, with E = 0.1 for each wave, the set is unstable to sideband disturbance 
at wavenumbers 8 and 10. Initial conditions were chosen to consist of these nine 
standing waves perturbed by a disturbance of amplitude at wavenumber 1, and 
their time evolution was calculated to confirm the initial linear instability and to find 
the form of the evolving standing wave motion. (An initial disturbance is introduced 
here, rather than leaving it to arise from numerical error as is done in all the following 
examples, because all the disturbance harmonics have exactly zero initial amplitudes 
otherwise. The initial disturbance chosen is approximately equal to the rounding error 
in the other examples.) 

is given by 
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FIGURE 2. The sideband modulation of a set of nine Stokes standing waves, where B = 0.1 for each. 
The cyclic recurrence in slow time results from the instability of the Stokes standing waves to a 
subharmonic disturbance. The fundamental amplitude ag3 of each of the original standing waves is 
at the top, then in order the two sideband amplitudes a83 and uIo3 are almost superposed, followed 
in order by the sideband amplitudes uIl3 and ~ 1 , ~ .  

The expansions (3.6a, b) are modified to 
45 45 

7 = 2 am(t) cos+mx, q5 = 2 bm(t) emzi9 cos$nx, (4.2a, b) 

because the standing wave motion takes place between x = 0 and x = 9n. The fast-time 
variation of the coefficients is removed by Fourier expansion over the corresponding 
period 67c/w, as in (3.8a, b), to yield 

m=l m=1 

45 9 

7 = C 2 a,,(t)cos~mxcos($zot+a,,(t)), (4.2 c) 
m=l1z=0 

and 
45 9 

q5 = 2 2 c,,(t)cos~mx e m z ~ g ~ ~ ~ ( ~ n ~ r + y m n ( t ) ) ,  (4.2 d )  
m=1 n=o 

where the amplitudes and phases are now functions of slow time. (The chosen upper 
limits for the series are a balance between the needs for sufficient numerical precision 
and sufficient computational speed.) 

The slow-time evolution of the Stokes standing waves is illustrated in figure 2, which 
shows the fundamental amplitude ug3 of each of the original standing waves at the top, 
then in order the two sideband amplitudes and aIo3 almost superposed, followed in 
order by the sideband amplitudes al13 and a,3. The standing wave system is exhibiting 
cyclic recurrence, of similar form to that found for Stokes progressive waves (Lake et 
al. 1977). The system retains its initial Fourier amplitudes for about 400 wave periods 
while the linear instability gathers strength, then the amplitudes undergo the slow 
nonlinear modulation described usually as cyclic recurrence. The period and the 
amplitude of the nonlinear modulation cycles are nearly constant. Each modulation 
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cycle consists of about 250 wave periods in which the amplitudes remain close to their 
initial values and about 250 wave periods in which the wave amplitudes change more 
rapidly. The root-mean energy (3.4) decreases by about 1 % over the 2000 wave periods 
in the figure owing to the energy losses at the truncation of the series (4.2). 

In order to understand the nonlinear interactions better, the Fourier coefficients 
a,(t) in (4.2a), calculated in fast time over the complete modulation cycle of length 514 
wave periods from period 626 to period 1140, are decomposed into Fourier series of 
period equal to the 514 wave periods. (This Fourier decomposition, being over the 
large number 514 x 64 of points, is almost equivalent to regarding the frequencies as 
forming a continuum.) Most of the energy at wavenumber n = 9 is found to be in a 
dominant waveband centred on frequency n = 3, as is expected from the initial 
conditions. However, the energy at the sideband wavenumber rn = 8 is found to be 
mostly in a dominant waveband centred near the linear frequency 4 8 )  = 2/8, rather 
than near the frequencies n = 2 and n = 4 expected from (3.2a, b). The reason for the 
occurrence of the linear frequency is that the dominant sideband wave component is 
a free component, as defined in (2.2), not a bound component such as those in ( 3 . 2 ~ ~  b). 
Bound components are found at this wavenumber, such as that at the frequency 
2 4 9 )  - w(8) = 6 - 2/8, but they have much less energy than the free component. Most 
of the energy at the other sideband wavenumbers m = 7,10,11 is also found in the free 
components with wavebands centred near w(m) = mi, m = 7,10,11 respectively. 

4.2, Standing waves with resonating first and fourth harmonics 
The weakly nonlinear theory predicts that pure standing waves exist for which the first 
and fourth harmonics interact resonantly with the amplitude ratio (2.15) 

a 4 2 / a i i  = 

in the present notation (3.8a, 6) .  The phase aqZ relative to the phase all (2.20) may be 
0,;7c,7c,$, denoted by standing waves SA, SB, SC, SD respectively. The letter S 
indicates that, like the Stokes standing wave, the amplitude a,, is dominant, and the 
second letter denotes the phase a42 relative to C X ~ ~ .  Standing waves of types SA and SC 
are described first. 

The fixed-point computational method (9 3.2) converges rapidly to these standing 
wave solutions with high numerical precision (error < lOP"), up to E = 0.2. Like the 
Stokes standing waves, the time origin may be chosen so that all the Fourier sine 
coefficients in (3.2a, b) are zero. In order to check the predictions of the weakly 
nonlinear theory, the frequency w and resonant amplitude a42 are expanded as 
polynomials in the fundamental amplitude a,, over the range 0 < E < 0.05. They are 
found to have the leading terms 

w = 1.000000-0.1250a~,+ . . .  and a42 = 0.250OOall-0.875a~,+ ..., (4.34 b) 

for both the SA and SC waves. The phase a42 (relative to all)  is zero for the SA waves 
and 7c for the SC waves. The expansions confirm (2.14~) and (2.15), and (4.3b) has 
important differences from the corresponding expansion (4.1 b)  for Stokes standing 
waves. Equation (4.1b) begins with the fourth power, consistent with the Stokes 
ordering, while (4.3b) has linear and cubic leading terms due to the resonant 
interaction between the first and fourth harmonics. Apart from the maximum at a42, 
the remaining harmonic amplitudes for the SA and SC waves lie close to a Stokes 
ordering. 

The stability of the standing waves for root-mean energies in the range 0 < E < 0.2 
is determined by calculating their long-time evolution ($3.3) for up to 10000 wave 
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FIGURE 3. The time evolution of the resonant amplitudes a,, and q2, starting from the standing 
wave SA with e = 0.1. 

periods. At e = 0.05, the harmonic amplitudes of both the SA and SC waves stay 
almost constant over the 10000 wave periods, but the phase ag2 of the dominant fourth 
component relative to the phase all of the dominant first component drifts 
monotonically by more than 7c over the same long time. This property is probably 
associated with the fact that the amplitudes are determined at the third order (2.15), 
but the phases are determined at the fifth order (2.19). 

An unexpected long-time behaviour occurs when the root-mean energy is increased 
to e = 0.1. The linear stability analysis for this case (2.27a-c) indicates that the 
standing waves SA and SC at this energy are stable. The stability described by this 
analysis may be demonstrated by starting from the fixed-point standing wave SA 
solution with a standing wave disturbance 0.01 added to the resonant amplitude a42 
and - 0.005 to the associated velocity potential amplitude, when all amplitudes 
oscillate in an apparent linearly stable motion with a period about 200 wave periods. 
However, the time evolution of the wave SA illustrated in figure 3, starting from the 
fixed-point standing wave solution with the only disturbance being the initial numerical 
error, shows that the wave SA is unstable. It shows also that the amplitudes of its 
dominant harmonics evolve into slow modulated nonlinear oscillations. 

When the fast-time variation of the sideband amplitudes in (3.6a, b) is decomposed 
with respect to one modulation period equal to 3 160 wave periods (effectively a Fourier 
decomposition into a continuum of frequencies), it is found that the energy in the 
sideband wave components occurs dominantly in wavebands centred near the bound 
components with amplitudes a31, a33, aS1, ab3, consistent with (3.2a, b). Unlike the 
sideband modulation in 54.1 or in the system (2.22), the energy in thefree components 
of the sidebands does not rise above the background level here. This means that the 
sideband wave components play only a passive role in the nonlinear modulation 
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illustrated in figure 3,  with the primary nonlinear interaction being that between the 
dominant resonating free components with amplitudes a,, and a42. We do not have a 
theoretical model yet to describe the instability leading to this nonlinear modulation. 

Another property shown by figure 3 is that the standing wave SA is only marginally 
unstable. The time evolution illustrated in this figure is started from the fixed-point 
standing wave solution, with the only disturbance being the initial numerical error. It 
can be seen that the standing wave amplitudes remain near their initial values for about 
1000 wave periods before evolving into the nonlinear modulated oscillations. Although 
not shown in the figure, the phases also remain constant over the same 1000 wave 
periods. The root-mean energy c decreases by only 0.1 % over the 10000 wave periods 
illustrated in figure 3. 

When the root-mean energy c is increased further, the nonlinear modulation retains 
the same form as in figure 3 except that the modulation period decreases. For e > 0.16 
approximately, the nonlinear energy transfer to the higher harmonics causes the time 
evolution calculations to fail before the nonlinear modulation is established. The SC 
standing waves follow the same long-time evolution except that the modulation periods 
are longer. The modulation period for the standing wave SC when c = 0.1 is 4200 wave 
periods, compared with the 3160 wave periods of figure 3. 

It is not possible to calculate the harmonics of the SB and SD standing waves to the 
same high numerical precision, using the fixed-point method ($3.2), as it is for the SA 
and SC waves. When the numerical precision is set so that the error < lop5, the fixed- 
point method remains in the neighbourhood of a solution instead of converging to it. 
This appears to be a consequence of the weak dependence of the harmonics on their 
phases compared with the dependence on their amplitudes. The phases are fixed at zero 
or 7[: for the SA and SC waves, but a similar constraint is not applicable to the SB and 
SD waves. There is not sufficient numerical precision to obtain meaningful polynomial 
expansions for the frequency w and the amplitude a42 of the SB and SD waves in terms 
of the fundamental amplitude all. However, the precision is sufficient to observe that 
the frequency for the SB and SD waves is found to follow the same curve, within a 
difference of less than as that for the SA and SC waves over the range 0 < 6 < 
0.2. Also, the amplitude ratio a42/a11 for the SB and SD waves lies close to that for the 
SA and SC waves over the range 0 < c < 0.05 (4.3b), but progressively departs from 
it at larger 6 .  

When the long-time evolution of the SB and SD waves is calculated at 6 = 0.05, their 
harmonic amplitudes stay almost constant over the 10000 wave periods of the 
calculation, despite the result below (2.224, but like the SA and SC waves at the same 
value of 6 ,  the phase a42 of the dominant fourth component relative to the phase a,, 
of the dominant first component drifts from its initial value over the same long time. 
The SB and SD waves do not evolve into a nonlinear modulation of the harmonics at 
higher values of 6 like the SA and SC waves, as illustrated in figure 3. Instead, for 
c = 0.1, the harmonics remain constant in amplitude and phase for about 3000 wave 
periods, then the calculation progressively fails because the nonlinear transfer of 
energy to the higher harmonics causes energy accumulation at the truncation 
harmonics. The harmonics remain constant for about 200 wave periods at e = 0.15, 
and only for about 30 wave periods at 6 = 0.2, before failure of the calculations. The 
time intervals over which the wave amplitudes remain close to their initial values are 
of comparable length to those found for the SA and SC waves, indicating that all four 
types of standing waves are of comparable stability. 
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4.3. Standing waves with resonating first and ninth harmonics 
The weakly nonlinear theory predicts that pure standing waves exist for which the first 
and ninth harmonics interact resonantly with the amplitude ratio (2.16) 

a d a i l  = f 
in the present notation ( 3 . 8 4  b). The only pure standing waves of this type that have 
been predicted theoretically and found computationally have the values 0, n for the 
phase ag3 relative to the phase all. These two are denoted by standing waves SNA, 
SNC respectively. The letter S indicates that, as with the Stokes standing waves, the 
amplitude a,, is dominant, the letter N indicates that the amplitude a42 is almost null, 
and the third letter indicates that the phase ag3 relative to all is zero or n for the two 
solutions respectively. 

The fixed-point computational method ($ 3.2) converges rapidly to the SNA and 
SNC standing wave solutions with high numerical precision (error < lo-''), up to e = 
0.2. Like the Stokes standing waves, the time origin may be chosen so that all the 
Fourier sine coefficients in (3.2a, b) for the SNA and the SNC waves are zero. The 
frequency o and resonant amplitude ug3, expanded as polynomials in the fundamental 
amplitude a,, over the range 0 < e < 0.05, are found to have the leading terms 

w = 1.000000-0.1250a~,+ ... and ag3 = 0.111 l l a l l -  1.230a;,+ ..., (4.4~2, b)  

for both the SNA and SNC standing waves. The phase ag3 (relative to all)  is zero for 
the SNA waves and n for the SNC waves. This expansion confirms (2.16) and has a 
similar form to (4.3b), with the linear and cubic leading terms arising from the resonant 
interaction between the first and ninth harmonics. Apart from the maximum near ag3, 
the remaining harmonic amplitudes for the SNA and SNC waves lie close to a Stokes 
ordering. 

The stability of the SNA and SNC standing waves for root-mean energies in the 
range 0 < e < 0.2 is determined by calculating their long-time evolution ($3.3) for up 
to 10000 wave periods. At e = 0.05, the harmonic amplitudes of both the SNA and 
SNC waves stay almost constant over the 10000 wave periods, but the phase ag3 of the 
dominant ninth component relative to the phase a,, of the dominant first component 
drifts monotonically by more than n over the same long time. Their long-time 
behaviour at this value of E is almost identical with that of the SA and SC waves. 

Unlike the SA and SC waves, a more predictable long-time behaviour occurs when 
the root-mean energy is increased to c = 0.1. The linear stability analysis (2.21 a-c) 
indicates that the standing waves SNA and SNC at this energy are unstable. The time 
evolution of the SNA wave at e = 0.1 is illustrated in figure 4 starting from the fixed- 
point standing wave solution, with the only disturbance being the initial numerical 
error. It can be seen that the standing wave amplitudes remain near their initial values 
for about 250 wave periods before evolving into nonlinear modulated oscillations. This 
initial behaviour is consistent with the instability predicted by (2.21 c). 

When the fast time variation of the amplitudes in (3.6a, b) is decomposed with 
respect to one modulation period equal to 301 wave periods (effectively a Fourier 
decomposition into a continuum of frequencies), it is found that the energy in the wave 
components during the modulated oscillations occurs dominantly in wavebands 
centred near the free components with frequencies w(m) = mi, m = 8,9,10. The bound 
components of the sidebands which were dominant in the nonlinear modulated 
oscillations evolving from the SA and SC waves ($4.2) have energies which are not 
much greater than the background level here. There are also bound components with 
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FIGURE 4. The time evolution of the resonant amplitude a93 at the top, then in order the two sideband 
amplitudes and ulO3 almost superposed, starting from the standing wave SNA with E = 0.1. 

small energies generated by the free components, such as those at wavenumber 9 with 
frequencies near 2/8 f 1, y'10 f 1. The fundamental wave component with amplitude 
a,, plays a passive role in the nonlinear modulated oscillations evolving from the SNA 
and SNC waves, and remains almost constant over the long time illustrated in figure 
4. This property is in contrast to the nonlinear modulated oscillations evolving from 
the SA and SC waves, where it can be seen in figure 3 that the long-time evolution of 
the amplitudes a,, and a42 is oscillatory and opposite in phase so that the total energy 
is conserved. 

The total energy in figure 4 decreases by less than 0.1 % over the 5000 wave periods 
illustrated. It is noted that the nonlinear modulated oscillations evolving from the SNA 
and SNC waves have a similar structure to those evolving from the sideband instability 
of the set of nine Stokes standing waves with the same value of 8 ($4.1, figure 2). When 
the root-mean energy E is increased further, the nonlinear modulation retains the same 
form as in figure 4 except that the modulation period decreases. The SNC standing 
waves follow the same long-time evolution as the SNA waves, with comparable 
modulation periods. 

4.4. Standing waves with resonating first, fourth and ninth harmonics 
It was shown in 92.3 that the third-order theory not only admits pure standing wave 
solutions in which resonant interactions occur between the two harmonics with 
amplitudes a,,,a,, or with amplitudes a,,,~,,, but also those in which resonant 
interactions occur between all three harmonics with amplitudes a,,, a42, a9,. The theory 
indicates that these standing waves have the same frequency relation (2.14~)  and the 
same amplitude ratio (2.15), (2.16) as the other two waves. 

A number of different standing wave solutions of this type have been found by the 
fixed-point method (8 3.2) and their properties investigated by the time evolution 
method ($3.3). If the known phase relations from the two previous sections are 
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FIGURE 5. The time evolution of the resonant amplitudes a,,, u42 and u9%, starting from the 

standing wave SAC with c = 0.1. 

combined, there are in principle eight different solutions of this type. The phase a42 
relative to the phase all (2.20) may be 0, in, n, in, and the phase ag3 relative to the phase 
a,, may be 0, n. The solutions are denoted SAA, SAC, SCA, SCC, SBA, SBC, SDA, 
SDC, with an obvious notation that combines the previous ones. The first four 
solutions, in which all phase differences are 0, n, have Fourier expansions (3.2a, b) with 
no sine terms. The only solution of the last four which has been found with confidence 
is the wave SBC, and its properties are similar to those of the first four waves. 

The properties of the wave SAC are described now, as a representative of the above 
five standing waves. The fixed-point computational method (9 3.2) converges rapidly to 
the SAC standing wave solutions with high numerical precision (error < lo-''). The 
leading terms of the polynomial expansions for the frequency and the resonant 
amplitudes of the wave SAC over the range 0 < e < 0.05 are 

w = 1.000000-0.1250a~,+ ..., a42 = 0.25000a1,-0.786a~,+ ..., (4.5a, b) 

and a,,=0.11111a,,-1.107a~,+ .... (4.54 

The phase aS3 (relative to all )  is n for the SAC waves. The two leading terms of the 
expansion for w agree with (2.14a), and the leading terms of the expansions for a42 and 
as3 agree with (2.15) and (2.16) respectively. 

The stability of the SAC standing wave for root-mean energies in the range 0 < e < 
0.2 is determined by calculating their long-time evolution (33.3). At e = 0.05, the 
harmonic amplitudes stay almost constant over the 10000 wave periods of the 
calculation, but the phases a42, as3 of the dominant components relative to the phase 
all of the first component drift over the same long time. 

The long-time evolution when the root-mean energy is increased to E = 0.1 is 
illustrated in figure 5, starting from the fixed-point standing wave solution with the 
only disturbance being the initial numerical error. It can be seen that the standing wave 
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amplitudes remain near their initial values for about 400 wave periods before evolving 
into nonlinear modulated oscillations. Their subsequent evolution consists of the slow 
change observed in figure 3 for the amplitudes a,, and a42, superposed on the fast 
modulation observed in figure 4 as the amplitude ag3 interacts independently with the 
free components in its sidebands. The root-mean energy E changes by less than 0.1 Yo 
over the first 3500 wave periods illustrated, and then by about 0.3 YO over the last 1500 
wave periods associated with the change in appearance of the modulation. 

When the root-mean energy is increased to E = 0.15, the SAC standing wave 
amplitudes remain near their initial values for about 100 wave periods. They then begin 
nonlinear modulated oscillations similar to those in figure 5 except that the modulation 
periods are smaller. These terminate after a further 250 wave periods when the 
nonlinear energy transfer to the higher harmonics causes the time evolution calculations 
to fail. 

4.5. Standing waves with resonating fourth and ninth harmonics 
The third-order theory in $2.3 not only admits pure standing wave solutions in which 
resonant interactions occur between the two harmonics with amplitudes a,,, a42 or with 
amplitudes a,,, ag3, but also those in which resonant interactions occur between the two 
harmonics with amplitudes a42, ag3 while the fundamental amplitude a,, remains much 
smaller. The theory (2.17b) indicates that these standing waves have an amplitude ratio 

4 a d a 4 2  = ii. 

The standing wave solutions of this type have been found by the fixed-point method 
($3.2) and their properties investigated by the time evolution method ($3.3). The 
argument based on phases advanced in the previous section indicates that there are in 
principle eight different solutions of this type. The only two solutions of this type that 
have been found with any confidence are denoted by NAC and NCC, where N 
indicates that the amplitude a,, is almost null, the second letter indicates that the phase 
a42 relative to a,, is zero or .n in the two solutions, and the third letter indicates that 
the phase ag3 relative to a,, is n: for both solutions. Although a,, 4 ag2 for small e( < 
0.05), a,, increases as E increases, becoming comparable with ag2 at about E = 0.1. 

The properties of the wave NAC are described now, as a representative of both 
standing waves of this type. The fixed-point computational method ($ 3.2) converges 
rapidly to the NAC standing wave solutions with high numerical precision (error < 
lo-''). The leading terms of the polynomial expansions with respect to ag2 for the 
frequency w and for the amplitude over the range 0 < E < 0.05 are 

w = 1 .OOO 000 - 2.072a:, + . . . , ag3 = 0.4445a4, + . . . , (4.6a, b) 

The phase ag3 (relative to a,,) is n: for the NAC waves. Better agreement with the weakly 
nonlinear theory is found with the corresponding relations at E = 0.001, which are 

w = 1 .OOOOOO - 2.0000a:,, ag3 = 0.44446a4,. ( 4 k  4 
Equation ( 4 . 6 ~ )  agrees with (2.17a) and (4 .6d)  agrees with (2.17b). 

The stability of the NAC standing wave for root-mean energies in the range 0 < 
E < 0.1 is determined by calculating their long-time evolution ($3.3). Because the 
amplitude a,, is much smaller than previously, it is necessary to choose the root-mean 
energy E to be smaller than in the previous examples so that the other resonant 
amplitudes have values comparable with those chosen previously. For this reason, the 
value chosen for the long-time evolution illustrated in figure 6 is only E = 0.05. It can 
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FIGURE 6. The time evolution of the amplitudes a4* at the top of the figure, ag3 next, and a,, (which 
is so close to zero that it is barely visible at the bottom of the figure), starting from the standing wave 
NAC with E = 0.05. 

be seen that the standing wave amplitudes remain near their initial values for about 100 
wave periods before evolving into nonlinear modulated oscillations. Their subsequent 
evolution is similar to that illustrated in figure 4. The amplitudes a,, and a42 are almost 
passive, while the amplitude ag3 interacts independently with the free components in its 
sidebands. The root-mean energy e changes by about 0.8 % over the 400 wave periods 
illustrated, but remains constant over the initial 100 wave periods while the standing 
wave stays near its initial amplitudes. 

When the root-mean energy is increased to c = 0.1, the NAC standing wave 
amplitudes remain near their initial values for about 20 wave periods before the 
nonlinear energy transfer to the higher harmonics causes the time evolution calculations 
to fail. 

5. Summary and discussion 
The Stokes standing wave S was the only known pure standing wave until Agnon et 

al. (1992) found four new waves, denoted by us SA, SB, SC, and SD. In the present 
paper we have studied these four new waves, and presented nine additional different 
forms of pure standing waves namely SNA, SNC; SAA, SAC, SCA, SCC, SBC; NAC, 
NCC. This is not expected to be a complete list, and we discuss the rather peculiar 
combination SAAA . . . below. 

The existence of the above new standing waves is in clear contrast to a remark by 
Schwartz & Whitney (1981, p. 168), in a footnote. Their resonance-suppression 
requirement removes harmonics which cause secular terms. The secular terms arise 
from the approximation of nonlinear resonance by linear resonance in the equations 
governing the small-amplitude expansions. The removal of the harmonics is a denial 
of the existence of the resonant maxima which are the distinguishing feature of the 
above new standing waves. 
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The agreement between our two approaches: (i) weakly nonlinear theory, and (ii) 
fully nonlinear computation, ensures that these solutions are genuine. We have shown 
that the solutions are not less stable than the original Stokes standing waves, and thus 
deserve attention in future investigations and applications. For example, the Fourier 
amplitudes of the standing wave SA in figure 3 remain close to their initial values for 
over 1000 wave periods before they evolve into a slow modulation. The sideband 
modulation in figures 2 and 4 is of special interest because it exhibits the same form of 
cyclic recurrence as the Stokes progressive waves. The question of the conditions for 
the generation of the new standing waves in a more realistic forced and damped system 
is an important objective for a future study. 

Most of the examples presented in the figures remain almost unchanged over initial 
intervals which are typically hundreds of wave periods. The question arises as to 
whether an instability such as that in figure 3 for an inviscid fluid is only of academic 
interest for real fluids. The theory for oscillating boundary layers may be adapted to 
show that the half-life for a Stokes standing wave in a deep square tank of side I 
containing a fluid of kinematic viscosity Y is N wave periods approximately, where 

N = O.O751~g~/v~. (5.1) 
For water at 20 “C, N = 133 when 1 = 1 m, but N = 4200 when 1 = 100 m. 

The presence of significant higher harmonics in the new standing waves becomes of 
greater importance for the water surface slope and acceleration. This is demonstrated 
with an exaggerated extension (ignoring surface tension and viscosity) to a possible 
wave SAAA . . . . The free surface of this wave’ is 

obtained as a generalization of combining ( 2 . 9 ~ )  with (2.15), (2.16). The energy of this 
‘wave’ is approximately 

which is only about 8 % greater than the energy of the fundamental harmonic given in 
parentheses. However, the vertical acceleration of the free surface ( - a2r/i3t2) diverges 
almost everywhere. The geometry of 7 at any given time is rather complicated. At 
t = 0, it takes the form of Riemann’s continuous but non-differentiable function 
(M andelbro t 1 9 82) 

w 1  

which can be shown to be a multifractal function with a dimension z 1.19. 
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